Hyperbolic Structures on 3-manifolds, I: Deformation of Acylindrical Manifolds

نویسنده

  • WILLIAM P. THURSTON
چکیده

This is an eprint approximation to [Thu86], which is the definitive form of this paper. This eprint is provided for convenience only; the theorem numbering of this version is different, and not all corrections are present, so any reference or quotation should refer to the published form. Parts II and III ( [Thua] and [Thub]) of this series, although accepted for publication, for many years have only existed in preprint form; they will also be made available as eprints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

References for Geometrization Seminar References

[1] L. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Ann. Math. 72 (1960), pp. 413– 429 [2] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. Math. 124 (1986), pp. 71–158 [3] D. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, in Analytical and Geometric Aspects of Hyperbolic Space, LMS 111 (198...

متن کامل

Hyperbolic Structures on 3-manifolds, Iii: Deformations of 3-manifolds with Incompressible Boundary

This is the third in a series of papers construting hyperbolic structures on Haken manifolds, analyzing the mixed case of 3-manifolds that with incompressible boundary that are not acylindrical, but are also not interval bundles. The main ingredient (beyond [Thu86] and [Thu98] is an upper bound for the hyperbolic length of the ‘window frame’, that is, the boundaries of I-bundles in the manifold...

متن کامل

Lower Bounds on Volumes of Hyperbolic Haken 3-manifolds

In this paper, we find lower bounds for the volumes of certain hyperbolic Haken 3manifolds. The theory of Jorgensen and Thurston shows that the volumes of hyperbolic 3-manifolds are well-ordered, but no one has been able to find the smallest one. The best known result for closed manifolds is that the smallest closed hyperbolic 3-manifold has volume > 0.16668, proven by Gabai, Meyerhoff, and Thu...

متن کامل

Geodesic planes in the convex core of an acylindrical 3-manifold

Let M be a convex cocompact, acylindrical hyperbolic 3-manifold of infinite volume, and let M∗ denote the interior of the convex core of M . In this paper we show that any geodesic plane inM∗ is either closed or dense. We also show that only countably many planes are closed. These are the first rigidity theorems for planes in convex cocompact 3-manifolds of infinite volume that depend only on t...

متن کامل

The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2π

This is the first in a series of two papers in which we develop the deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2π, i.e. contained in the interval (0, 2π). In the present paper we focus on deformations keeping the topological type of the conemanifold fixed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1986